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5. Damped harmonic oscillations 
A harmonic oscillation is a linear movement (along an axis), where the resulting force is always 
directed against and proportional to the distance to the position of equilibrium. 
If the motion is along the x – axis, then the equation of motion is: 
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If we put  
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  (the cyclic frequency), then the equation becomes:  
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Which has the familiar solution: 
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A is the amplitude, ω is the cyclic frequency, and φ0 is the initial phase. 
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In the Math classroom, one usually writes the solution in a slightly different way: 
 
(5.3)  tctcx  sincos 21   
 
That this is actually the same solution, one may realize, by applying one of the addition formula, 
mentioned earlier:  
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to the solution (5.2). 
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We regain the solution (5.2). 
If there is friction or viscous forces (drag forces), another term has to be added to (5.1). We shall 
first assume that the drag force is proportional to the velocity, and directed opposite to the 
velocity. 
 
The coefficient of proportionality depends on the shape of the body, and the nature of the medium 
(air, liquid) the body moves in.  
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Hereafter the differential equation for the damped harmonic oscillator becomes. 
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It is however associated with a bit more ingenuity to solve (5.5), than to solve (5.1). 
First we simplify the equation a bit, with the aim of having lesser constants.  
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(5.6) is now a 2. order linear homogenous differential equation with the two constants b and c.  
It is linear, because all terms containing x appears in first order, and homogenous, because there 
are no terms which depend explicit on t. 

5.1 Solution to the differential equation using complex numbers. 
The solution of linearly homogenous differential equations with constant coefficients, can always 
be reduces to finding the complex roots in the characteristic polynomial of the same order as the 
differential equation 
To solve (5.6), we put tzex  where z is a complex number to be determined. It then follows: 
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Inserting in (5.6) and dividing by tze  , we get a complex quadratic equation: 
 

 02  czbz  
 

The discriminant is: cbd  42 . The discriminant is real, so if  d > 0 then quadratic equation has 
two real solutions.  
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Returning to the original equation, we notice that b >0 and  c = k/m > 0, so both solutions (5.7) are 
negative. The case  d = 0 reduces to one solution.  
 
If d < 0 then the quadratic equation has no real solutions, but rather two complex solutions. 
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Here i is the complex unit. i2=-1. 
 
In the theory of complex numbers one of the most important formulas is Eulers formula.  
Actually one of the most important formulas in the mathematical analysis at all. 
If yixz   is a complex number, where x and y are real, Euler’s formula reads: 
  
(5.9)  )sin(cos yiyeeeee xiyxiyxz     
 
We are only interested in the real part of the solution – naturally! 
Furthermore, we notice that when we made the substitution tzex  , we might as well have written  

0itzAex  , having two integration constants. necessary for the complete solution of a second 
order differential equation. 
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What we see is that the solution is a harmonic oscillation, but with an amplitude which decreases 
exponentially with time. This is called damped harmonic oscillations. 

If the original values for the constants for b and  c:  
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  is the coefficient of viscosity, defined by the equation: Fvisc = -α·v, and k is "constant of the 
spring". 
The condition for the validity of the solution (5.11) is that the expression under the square root is 
positive. Otherwise the oscillating system will never perform one period, and the system will 
approach the equilibrium exponentially. 

5.2 Traditional solution of the same differential equation 
We shall again look at the differential equation 
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For convenience, as above, we make some abbreviations. 
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We solved earlier the equation by resorting to complex numbers, but here we shall apply a more 
traditional method, resembling the method used to solve a general linear first order equation. 
 
The method is to introduce an aiding function, equipped to rewrite the differential equation to one, 
we can solve, that is, the equation for the harmonic oscillator.  
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Having the solution: 
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To obtain this we have put y = x te  , where x refers to the solution to the original differential 
equation (5.13)  
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By a suitable choice of β and 2 , we hope to make (5.16) have the same form as (5.13) 
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We add the term txe  2  to the second derivative of txe   and put the result to 0. 
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The equation is simplifying by dividing by te  . 
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We then compare (5.18) with the original differential equation: 
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And we see that the two differential equations are identical if and only if: 
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However, we can solve (5.17) directly. If we put texy    , the equation takes the form: 
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Inserting the constants:
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The solution is a harmonic oscillation with an exponential decreasing amplitude. 
 
Below is shown an example of a solution, where the exponential envelope curve is also shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Damped harmonic oscillations turn up in many fields of physics, and therefore it is not without 
interest to be able to solve the associated differential equations. 
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6. Forced harmonic oscillations without damping 
We shall consider a forced oscillation without damping, where the mass m, besides the “spring 
force” i.e. obeys Hookes law – kx , is driven by an external time dependent force f(t). 
The results are directly applicable to an electrical circuit consisting of a capacitor and a coil, and 
driven by an alternating current. 
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We shall assume that the external force varies harmonically: tiext e
m
f

m
tF 0)(
 . 

The solution to (6.1) is (as well known from the theory of differential equations) a particular 
solution to the non homogeneous equation plus the complete solution to the corresponding 
homogeneous equation: 
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is of second order with constant coefficients, we may write a particular solution as: tiAex   
(where ω is the enforced frequency), when inserted in (6.3) gives: 
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The complete solution to (6.3) can thereafter be written as the particular solution plus the solution 
to the homogeneous equation: 
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Writing this as: x = A·cos(ω0t+φ)+ B·cos(ωt), we can in the case where  A = B apply the first of 
the logarithmic formulas for addition of two cosine functions:  
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A phenomenon, which is familiar for sound waves, and goes under the name modulation and 
beats. 
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In general the two amplitudes A and B are not equal, but it changes only the situation in the sense 
that the signal will have two beat frequencies instead of one. 
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A·cos(ω0t+φ)+ B·cos(ωt)=(C+D)cos (ω0t+φ)+ (C-D) cos(ωt) = 
 
C·cos (ω0t+φ)+ C·cos(ωt)+ D·cos (ω0t+φ)- D·cos(ωt) 

 
Rewriting the solution using the logarithmic formulas then gives: 
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The result is two modulations with the same frequency, but where the amplitudes (the beats) are 

2
 out of phase. 

 


